

Spectral and Imaging Properties of Sgr A* from 3D GRMHD Simulations with Radiative Cooling

RAS Poster Exhibition (Sep. 2020)

Doosoo Yoon¹ (¹Univ. of Amsterdam)

with Koushik Chatterjee¹, Sera Markoff¹, David van Eijnatten¹, Ziri Younsi (Univ. College London), Matthew Liska (Harvard Univ.), Alexander Tchekhovskoy (Northwestern Univ.)

Event Horizon Telescope

- Sagittarius A* (Sgr A*) is the unique laboratory for testing the theory of general relativity due to its proximity, but many aspects remain unclear yet. It is believed to be fed by a radiatively inefficient accretion flow (RIAF), which is inferred by the low accretion rates: 10⁻⁹ M_☉ yr⁻¹ < M < 10⁻⁷ M_☉ yr⁻¹
 → Radiative cooling has been ignored for modeling Sgr A* (e.g., Porth+20, Dexter+20).
- Unanswered questions:
 - how do radiative cooling losses affect the turbulence features of the disk, and thus the angular momentum transport?
 - is the cooling process *indeed* negligible for modeling the spectra from Sgr A*?

Cooling is applied to the energy equation in GRMHD computation

- Initial setup in 3D GRMHD Simulations: H-AMR code (Liska+18)
 - a single loop of weak magnetic field threaded Fishbone-
 - Moncrief torus: Standard and Normal Evolution (SANE) disk
 - jet aligned with the angular momentum of the disk

Fig1.^r3D volume rendering of gas density from the GRMHD data

Event Horizon Telescope

Yoon @ RAS Poster (Sep. 2020) Intro

Fig 6. Ray-traced image at 230 GHz for Sgr A* using ray-tracing code **BHOSS** (Younsi+19): direct image from GRMHD data (left) and the blurred image (right) to mimic the Sgr A* image from the **Event Horizon Telescope**

Yoon @ RAS Poster (Sep. 2020)

Result: Radiation & Conclusion

INSTITUTE